загрузка...
загрузка...
На головну

Лекция №7

Дивіться також:
  1. Апреля лекция пропущена!!!
  2. БЖД лекция 9 (техногенные опасности)
  3. Бухгалтерский учет. Обзорная лекция
  4. В. О. Ключевский. Курс русской истории. Лекция 30.
  5. ВВОДНАЯ ЛЕКЦИЯ
  6. ВВОДНАЯ ЛЕКЦИЯ
  7. Вид занятия - лекция-беседа.
  8. ВТОРАЯ ЛЕКЦИЯ ОБ ИСКУССТВЕ ОБЩЕНИЯ
  9. Гражданская война и иностранная интервенция. Лекция 2
  10. Гражданская война и интервенция в России. Лекция 1.
  11. Дальше кому эта херня нужна может ее выучить, но она отсутствует в лекциях
  12. Девятая лекция.

Семинар №6

Тақырыбы: Халықты қорғаудың негізгі әдістері:

Мақсаты: Студенттерді негізгі қорғау әдістері мен халықты қорғаудың ұжымдық құралдарына үйрету.

1-тапсырма. Төменде көрсетілген сурет бойынша панаханың құрылысын

түсіндір.

2-тапсырма. Келесі схемаларды толтыр:

Қорғаныс құралдары

Құрылу принципі бойынша:


Көлемі бойынша:
Орналасу жері бойынша


І. Радиация көздері, табиғи радиоактивтілік, жергілікті жердің радиоактивтік ластануы.

1. Табиғи және жасанды ластану көздері.

2. Радиациялық апаттың зақымдаушы факторлары.

3. Адамдардың сәулелену ауруларының жіктемесі.

Радиоактивтілік және оған жалғасатын иондық сәулелену Жер бетінде тіршілік пайда болғанға дейін өмір сүрді. "Иондық сәулелену" атауы физикалық табиғаты бойынша әртүрлі сәулелену түрлерін біріктіреді. Радиоактивтік материалдар Жер мен Күн жүйесінің планеталарының құрамына олар пайда болған сәттен бастап кірді. Радионуклидтер тау жыныстарында, топырақта, суда кездеседі. Олар белгілі бір деңгейде өсімдіктер, адам ұлпасы мен мүшелерінде және хайуанаттарда да кездеседі.

Радиоактивтілікті ашу француз ғалымы Анри Беккерелдің есімімен байланысты, ол 1896 жылы қара қағазбен жабылған фотопластинканы ағартқан уран тұзының сәулеленуін анықтады. Жарыққа және 1895 жылы ашылған рентген сәулелеріне ұқсастыру бойынша бұл қүбылыс радиоактивтілік атауына ие болды, яғни сәулелендіру қабілеті. Радиоактивтілік сәулелену көптеген физиктер мен химиктердің назарын аударды. Осы құбылысты зерттеуге Мария және Пьер Кюри орасан зор үлес қосты. 1898 жылы олар уранның сәулеленгеннен кейін басқа химиялық элементке айналатындығын анықтады. Олардың кейбірін - радий мен полонийді ғалымдар таза күйінде ажыратты. Бір грамм радийдің сәулеленуінің бір грамм уранның сәулеленуінен миллион есе асып түсетін болып шықты. Бұдан кейін радий өзінің "сәулеленуші" атауына ие болды.

Аз уақыттан кейін радиоактивті сәулеленудің біртекті емес екендігі және иондалулы және кіру қабілетімен ерекшеленетін сәулеленудің үш түрінің бар екеңдігі анықталды. Сәулеленудің осы үш түрі грек қаріпінің алғашқы әріптерімен аталды: альфа, бета және гамма. Кейіннен алъфа-бөлшектің гелийдің алты, ОНДЫҚ ядросы; бета-бөлшектің электрон екендігі, гамма-сәуленің электромагнит сәулелену екендігі анықтады.

Радиоактивтік ыдырау кезігіне шығатын бөлшек пен гамма квант заттармен ықпалдаса отыра өз энергиясын иондауға жұмсайды. Осы сәулелердің ортақ термин ретінде мына сөздер пайдаланылады: иондаушы сәулелену, иондағыш радиация немесе жай ғана радиация.

Иондаушы сәулелену - элементті бөлшектер ағынынан (электрон, протон нейтрон, позитрон) және электрон магнитті сәулелену кванттарынан тұратын сәулелену, олардың заттар мен ықпалдасуы бұл заттарда әртүрлі заттардың пайда болуына алып келеді.

Радионуклид - атомдық салмағы мен атомдық заряды бар радиоактивті заттың атомы. Бірдей зарядтары бар, алайда атомдық салмағы әр түрлі атомдар осы элементтің изотоптары деп аталады.

Радионуклидтің ыдырау өнімдерінен басқа иондаушы радиацияға Жерге ғаламдық кеңістіктен келген ғарыш сәулелері мен электр энергиясын иондаушы сәулеленуге айналдыратын сәулеленудің жасаңды көздері жатады (рентген апараты, элемент бөлшектерді жылдамдатушылар жэне т. б.). Иондаушы сэулелердің әртүрлі ену қабілеті жоғалған энергияның әр түрлі жылдамдығымен байланысты болып шықты. Альфа бөлшектер заттармен ықпалдаса отыра өз қозғалысының бойы толық иондайды, сөйтіп энергиясын жылдам жоғалтады. Сондықтан альфа бөлшектердің көптеген заттардағы қозғалысы үлкен емес - олар ауада 3 - 8 см етеді, металда - 10 микрон, ал тіпті тығыз қағаздың бір бет парақ да альфа бөлшекті толығынан ұстайды. Бета-бөлшектер үлкен ену қабілетіне ие, ауада олар 20 метрге дейінгі жолдан өтеді, ал олардың металда жұтылуы үшін қалыңдығы бірнеше милиметр қабат жеткілікті.

Гамма-кванттар ауада жұтылмайды, ал олардың ағынының әлсіреуі гамма-квант пен жұту материалының энергиясына тығыз байланысты. Мысалы, цезий - 137 гамма-сәулеленуің әлсірету үшін қалындығы 30 см алюминий немесе қалыңдығы 8 см қорғасын қабаты мыңдаған есе қажет. Екінші жағынан гамма-кванттар (альфа және бета-бөлшекгер сияқты) барлық бағыт бойынша кең мүмкіндікті көздер ретінде шығады. Сон-дықтан да олардың жиілігі қашықтық квадратына сәйкес керісінше азаяды, яғни бір метр қашықтықтағы сәулелену жиілігі 10 см қашықтықтағыдан 100 есе аз болады.

Геохимиялық процестердің нәтижесінде радиоактивті элементтер жер қыртысында болуы, табиғи суларға түсуі, желдету процестеріне қатысуы мүмкін.

Көп жағдайда тау жыныстарындағы уран су бетіне шығып, оны едәуір қашықтыққа айдайды. Барлық табиғи суларда уранның қандай да бір мөлшері кездеседі. Егер судың жолына уранды жақсы бөлетін геологиялық ошақ кездессе ол сонда жинақталады және геологиялық процестердің үлкен созымдылығын ескергенде (ондаған және жүздеген мың жылдар) бұл орыңдардағы уранның жинақталуы айтарлықтай көлемге жетуі мүмкін.

Уранның қайта жинақталуы туралы ғана бірнеше мысал келтіруге болады. Қазылған көне хайуанаттар сүйектері қатты байытылған - проценттің он үлесіне дейін. Кейбір көмір өндіретін орындарда уран проценттің жүздеген үлесі деңгейіне дейін жинақталған учаскелерге түседі. Алайда уранның өзі организмге енгеннің өзінде үлкен радиациялық қауіп төндірмейді, өйткені оның үлестік белсенділігі (яғни, белсеңділігі бір граммға есептелген) көп емес, ол организмнен тез шығарылады және көп мөлшерде енген жағдайда (бір грамм шамасы) радиоактивтілікке байланысты химиялық улану басталуы мүмкін.

Ураннан ыдыраған өнімдердің радиациялық қауіптілігі едәуір жоғары. Олардың арасында радон бірінші орын алады.

Радон - дәмі мен иісі жоқ түссіз газ, ауадан 7,5 есе ауыр, радийдың ыдырау өтімділігі болып табылады. Радон жер қыртысынан біртіндеп бөлінеді, алайда оның сыртқы ауадағы жинақталуы әлемнің әртүрлі нүктелері үшін елеулі ерекшеліктерімен көрінеді. Топырақ эмиссиясын қоспағанда минералдық тектегі құрылыс материалдары: қиыршық ақтас, цемент, кірпіш және т. б. радон көздері бола алады. Барлық жыныстарда уран мен торий кездеседі. Ал кейбір жыныстарда, мысалы гранитте уран көбірек жинақталуы мүмкін. Құрылыс материалдарына радон ыдырағанда пайда болады. Пайда болған радонның бір бөлігі көзге көрінбейтін тесік арқылы ғимаратқа түседі. Егер ғимарат нашар желдетілсе, ал қүрылыс материалдары мен топырақ уран мен радийдың едәуір үлкен мөлшерін бойында ұстаса, онда радон үлкен мөлшерде жиналуы мүмкіп. Адамның ғимаратта едәуір уақыт болатындығын ескергеңде, ол ала алатын тиімді сәулелену дозасы кәсіпқойлар алатын доза жүктемесінен асып түсуі мүмкін. Көп жағдайда радонға байланысты дозалық жүктемені едәуір азайтуға болады. Жертөлелерді қымтау мен желдету топырақтан радонның өтуін айтарлықтай азайтады. Табиғи радиоактивтік элементтер қабырғада көп болса, радонның жиылуын қабырғаны герметикалық бояумен сырлау жөне қатты желдету арқылы азайтуға болады.

Радиацияның табиғи көздеріне космостық сәуле жатады. Олар алынатын радиацияның табиғи көздері дозасының жартысын құрайды.

Радиациялық авария - радиоактивті өнімдердің тасталуына немесе иондаушы сәулеленудің РҚО аумағын қалыпты пайдалануға арналған жобада қарастырылғандағынан артық мөлшерде шығуына байланысты болған авария.

Радиациялық аварияның салдары олардың зақымдаушы факторларына байланысты. Радиациялық авариялардыц негізгі зақымдаушы факторлары радиациялық әсер және радиоактивті ластану болып табылады. Авариялар жарылыстар мен өрттерді тудыруы мүмкін. Ядролық реакторы бұзылған атом станцияларындағы авариялар өте ауыр салдарға алып келеді.

Радиациялық авариялардың салдары негізінен радиациялық әсер жэне радиоактивті ластанудың көлемімен және деңгейімен, сондай-ақ радионуклид құрамымен және тасталған радиоактивті зат мөлшерімен бағаланады.

Авария барысында және одан кейін оның салдарының деңгейі мен ұзақтығына, сондай-ақ радиациялық ахуалға мыналар айтарлықгай ықпал етеді:

- радиоактивті заттардың табиғи ыдырауы, осы заттардың қоршаған ортаға таралуы;

- метеорологиялық және климаттық факторлар

- авария салдарын жою жөніндегі жұмыс нәтижелілігі, оның ішінде дезактивация мен суды қорғау шығарылады.

Авариядан кейінгі бастапқы кезеңде жалпы радиоактивтілікке жартылай ыдырайтын қысқа мерзімімен (әдетте екі айға дейін) радионуклидтер айтарлықтай үлес қосады. Мұндай радионуклид, атап айтқанда радиоактивті йод (йод - 131) болып табылады.

Активтиктің кейіннен әлсіреуі бірнеше жүз тәуліктен мың жылға дейін созылатын жартылай ыдыраудың үлкен мерзіміндегі нуклидтермен анықталады. Олардың арасынан ұзақ уақыт бойы радиациялык, ахуалдың серпініне негізгі үйлесті биологаялъгқ қауіпті цезий - 137, стронций - 9, плутоний - 239 және басқа радионуклидтер енгізеді.

Радиациялық әсерге сәулеленуге сезімтал адамдар, малдар, өсімдіктер мен приборлар ұшырайды. Ғимараттар, коммуникация, технологиялық қондырғы, көлік құралы, мүлік, материал мен азық-түлік, жайылым мен табиғи орта радиоактивті ластануға ұшырайды.

Ауылшаруашылығы кешеніне РҚО-дағы авария салдары жағымсыз әсер етеді. Оның қатардан шығуы ядролық отын, электр және жылу энергия, сондай-ақ ядролық жанармайдан шыққан элементтерді ұқсату және радиоактивті қалдықтарды көму өндірісін тоқтатуға алып келеді.

Ортаның радаоактивіі ластануы радиоактивті заттың шектен тыс (көлемді) тығыздығымен сипатталады және ауадан (көлем) бірлігіне орайлас радионуклид белсенділігімен өлшенеді.

Радиоактивті ластанудың нәтижесінде шаруашылық айналымынан өнеркәсіп кәсіпорындары, инфрақұрылым элементтері, тұргын үй, әлеумет тұрмыс объектілері, ауыл-шаруашылыгы мен орман алқаптары, суаттар мен жер асты су көздері, әртүрлі табиғат объектілері бар бірталай аумақ шығарылады.

Іс жүзінде иондаушы сәулелену үшін адам организімінде кедергі жоқ. Организмге еніп, өз энергиясын бере отыра олар денедегі заттың кез келген молекуласын иондайды, олардың химиялық байланысын бұзады, бұл организмдегі биологиялық процестердің қалыпты ағысы мен зат алмасуын бұзады. Бұл, өз кезегінде мидың, асқазанның, қалқанша бездің, орталық нерв жүйесінің және басқалардың жұмыс істеуін тоқтатуға алып келеді.

Адам сәуле ауруына ұшырайды, оның ауыртпалық деңгейі сәулеленудің қуаты мен мөлшеріне байланысты. Сонымен қатар организм клеткаларында қауіпті ісіктердің пайда болуына алып келетін өзгерістер өтеді.

I дәрежелі сәуле ауруы (жеңіл) - 100- 200 рад сәлелену дозасы кезінде. Жасырын мерзімі 3-5 апта, бұдан кейін әлсіздік, бастың ауруы, температураның көтерілуі, лоқсу, пайда болады. Ауруды емдеуге болады.

II дәрежелі сәуле ауруы (орташа) -200- 400 рад сәулелену дозасы кезінде. Жасырын мерзімі 3-4 апта. Ауру белгілері анық білінеді. Өте жақсы емделген жағдайда екі- үш ай ішінде сауығады. 20 процент жағдайда адам өледі.

III дәрежелі сәуле ауруы (ауыр) -400- 600 рад сәулелену дозасы кезінде. Алғашқы белгісі анық білінеді, 20-сы 30 минуттан кейін қайта-қайта құстыртып, дененің температурасы 33 градусқа жетеді. Ауру жедел және ауыр өтеді. Алғашқы аптаның өзінде ауыз кілегейі зақымдалып, гиперемия болуы мүмкін (қан белгілі бір орынға немесе ұлпа учаскесіне қатты аққанда оның бір жердегі мөлшері артады немесе оның ағуы қиындайды), ауыз бен жұтқыншақ зақымданады, тері қабаттары қызарады. Терінің жәй немесе шектен тыс қызаруы. Жасырын мерзімі 10-20 апта, бұдан кейін бас қатты ауырып, іш өтеді, есінен айрылады. Сәтті жағдайда 3-6 ай-дан кейін сауығуы мүмкін. 20-70 процент жағдайда өледі.

IV дәрежелі сәуле ауруы (өте ауыр) -600 - раднан жоғары сәлелену дозасы кезінде 20 - 30 минуттан кейін алғашқы белгілері біліне бастайды. Дене температурасы 30 градустан асып, тері зақымданады. Дәрет сұйылады. Емдеусіз екі-үш апта бойында өледі. Аурудың барлығы дерлік өліммен аяқталады.

Лекция №5 «-- попередня | наступна --» Семинар № 7
загрузка...
© om.net.ua